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INTRODUCTION

Variance components are the latent variables estimated in a random effects model, such as

Yijk = μ + Ai + Bj + Eijk (1.1)

Here, the Ai ~ N(0, σA
2), Bj ~ N(0, σB

2) and Eijk ~ N(0, σ2), and σA
2, σB

2 and σ2 are the variance
components to be estimated based on observations on Yijk.

All the formulas that follow assume independent normal distributions.

CONFIDENCE INTERVAL FOR A SINGLE VARIANCE

Suppose we wish a 95% confidence interval on a single variance σ2 estimated by v = s2, where s
is the standard deviation estimate. Then the interval is

LCL(σ2) = v / ( χ0.975; f
2 / f ) (2.1a)

UCL(σ2) = v / ( χ0.025; f
2 / f ) (2.1b)

where f is the degrees of freedom associated with v and χ0.975; f
2 and χ0.025; f

2 are the 97.5% and
2.5% quantiles of the χ2 distribution for f degrees of freedom. (For definiteness of notation, note
that χ0.025; 10

2 = 3.25 and χ0.975; 10
2 = 20.48. Frequently these values are switched in tables and in

software.)

If a 95% confidence on σ is needed, take the square roots of eqs.(2), i.e.:

LCL(σ) = s / √( χ0.975; f
2 / f ) (2.2a)

UCL(σ) = s / √( χ0.025; f
2 / f ) (2.2b)
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CONFIDENCE INTERVAL FOR A LINEAR COMBINATION OF VARIANCES

Suppose a variance component v is to be estimated from a linear combination of independent
estimated variances v1, v2, ..., vp:

v = Σ ai vi (3.1)

The Graybill-Wang approximate 95% confidence interval is [1]

LCL(σ2) = v - √ { Σ (gi ai vi)
2 } (3.2a)

UCL(σ2) = v + √ { Σ (hi ai vi)
2 } (3.2b)

where

gi = 1 -  1 / ( χ0.975; fi
2 / fi) (3.3a)

hi = 1 / ( χ0.025; fi
2 / fi) - 1 (3.3b)

and fi is the degrees of freedom associated with vi.

As before, if a 95% confidence interval on s = √v is needed, use the square roots of LCL and
UCL in eqs.(3.2).

Burdick and Graybill indicate that eqs.(3.2) should not be used when any of the ai are negative.

Note that eqs.(3.2) include eqs.(2.1) as a subcase.
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CONFIDENCE FOR A DIFFERENCE OF VARIANCES

Suppose a variance component v is to be estimated from a difference of independent estimated
variances v1 and v2:

v = a1 v1 - a2 v2 (4.1)

The Ting et al. approximate 95% confidence interval is [1]

LCL(σ2) = v - √ { Σ L } (4.2a)

UCL(σ2) = v + √ { Σ U } (4.2b)

where

L = (g1 a1 v1)
2 + (h2 a2 v2)

2 + g12 a1 a2 v1 v2 (4.3a)

g1 = 1 -  1 / ( χ0.975; f1
2 / f1) (4.3b)

h2 = 1 / ( χ0.025; f2
2 / f2) - 1 (4.3c)

{ (F0.975;f1,f2 – 1)2 – g1
2 F0.975;f1,f22

2 – h2
2 }

g12 = -------------------------------------------------- (4.3d)
F0.975;f1,f2

U = (h1 a1 v1)
2 + (g2 a2 v2)

2 + h12 a1 a2 v1 v2 (4.3e)

g2 = 1 -  1 / ( χ0.975; f2
2 / f2) (4.3f)

h1 = 1 / ( χ0.025; f1
2 / f1) - 1 (4.3g)

{ (F0.025;f1,f2 – 1)2 – h1
2 F0.025;f1,f22

2 – g2
2 }

g12 = -------------------------------------------------- (4.3h)
F0.025;f1,f2

and fi is the degrees of freedom associated with vi, and F0.025;f1,f2 and F0.975;f1,f2 are quantiles of the
F distribution.

If σ2 is known to be positive, then replace any negative LCL or UCL in eqs.(4.2) by 0.

As before, if a 95% confidence interval on s = √v is needed, use the square roots of LCL and
UCL in eqs.(3.2).
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SIMULATION

To assess the coverage accuracies of the above intervals, two independent normal variances v1

and v2 with degrees of freedom f1 = 10 and f2 = 30 were sampled 10,000 times from the relevant
χf

2 distributions with σ1
2 = 4 and σ2

2 = 2.

The mean values found from the sampling were 4.023 and 1.999 for v1 and v2, respectively,
within expected precision.

The confidence intervals from eqs.(2.1) for σ1
2 averaged [1.96, 12.39], close to the [1.95, 12.32]

expected. The interval coverage was 94.8%, very close to the 95% expected.

The confidence intervals from eqs.(2.1) for σ2
2 averaged [1.28, 3.57], identical to the [1.28, 3.57]

expected. The interval coverage was 95.0%.

A confidence interval for v = v1 + v2 was estimated using eqs.(3.2). The mean interval was
[3.81, 14.58] with a coverage of 94.8%.

A confidence interval for v = 3 v1 + v2 was estimated using eqs.(3.2). The mean interval was
[7.83, 39.23] with a coverage of 94.8%.

A confidence interval for v = v1 - v2 was estimated using eqs.(3.2). The mean interval was [-
0.19, 10.58] with a coverage of 95.5%. A similar interval using the supposedly better eqs.(4.2)
gave a mean interval of [-1.12, 10.37] with a coverage of 91.5%.

A confidence interval for v = 3 v1 - v2 was estimated using eqs.(3.2). The mean interval was
[3.84, 35.23] with a coverage of 95.1%. A similar interval using the supposedly better eqs.(4.2)
gave a mean interval of [4.61, 35.12] with a coverage of 91.5%.

It appears that eqs.(3.2) are quite accurate in coverage, and are more accurate than eqs.(4.2),
despite the negative coefficient and the recommendation in [1].
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R SCRIPT FOR SIMULATION

#06.16.09 23.10 test-vcCI.r
#copyright 2009 by Robert A LaBudde, all rights reserved
#Test of vcCI.r confidence intervals on variances
#created: 06.16.09 by r.a. labudde
#changes:

source('vcCI.r')

nReal<- 10000
df1<- 10
df2<- 30

V1<- 4
V2<- 2

stats<- matrix(rep(0,nReal*18),ncol=18)
for (iReal in 1:nReal) { simulate

v1<- V1*rchisq(1,df1)/df1
v2<- V2*rchisq(1,df2)/df2
CI1<- vcCI1(v1,df1) #CI on v1
CI2<- vcCI1(v2,df2) #CI on v2
CI3<- vcCI2p(1,v1,df1,1,v2,df2) #CI on v1 + v2
CI4<- vcCI2p(3,v1,df1,1,v2,df2) #CI on 3*v1 + v2
CI5<- vcCI2n(1,v1,df1,1,v2,df2,bPos=FALSE) #CI on v1 - v2
CI6<- vcCI2n(3,v1,df1,1,v2,df2,bPos=FALSE) #CI on 3*v1 - v2
CI7<- vcCI2p(1,v1,df1,-1,v2,df2) #CI on v1 - v2 using vcCI2p
CI8<- vcCI2p(3,v1,df1,-1,v2,df2) #CI on 3*v1 - v2 using vcCI2p
stats[iReal,]<- c(v1,v2,CI1,CI2,CI3,CI4,CI5,CI6,CI7,CI8)

}

colMeans(stats)
sum(V1>=stats[,3] & V1<=stats[,4]) #coverage for V1 using vcCI1
sum(V2>=stats[,5] & V2<=stats[,6]) #coverage for V2 using vcCI1
sum(V1+V2>=stats[,7] & V1+V2 <=stats[,8]) #coverage for V1+V2 using vcCI2p
sum(3*V1+V2>=stats[,9] & 3*V1+V2 <=stats[,10]) #coverage for 3*V1+V2 using vcCI2p
sum(V1-V2>=stats[,11] & V1-V2 <=stats[,12]) #coverage for V1-V2 using vcCI2n
sum(3*V1-V2>=stats[,13] & 3*V1-V2 <=stats[,14]) #coverage for 3*V1-V2 using vcCI2n
sum(V1-V2>=stats[,15] & V1-V2 <=stats[,16]) #coverage for V1-V2 using vcCI2p
sum(3*V1-V2>=stats[,17] & 3*V1-V2 <=stats[,18]) #coverage for 3*V1-V2 using vcCI2p


